In Numbers We Trust - Der Data Science Podcast

Wir machen Data Science. Und in unserem Podcast IN NUMBERS WE TRUST reden wir darüber. Du bist ebenfalls Data Scientist oder interessierst dich für Daten, ML und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten. Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in über 10 Jahren als Data Scientists im B2B Bereich gesammelt haben. Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt. Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.

Listen on:

  • Apple Podcasts
  • Podbean App
  • Spotify
  • Amazon Music

Episodes

#39: Death by Microservices

Friday Jan 26, 2024

Friday Jan 26, 2024

Und nun lebe der Monolith? Während Microservices als State-of-the-Art gelten, beobachten wir auf Konferenzen teils gegenläufige Bewegungen zurück zu Monolithen. Gründe dafür sind vor allem die steigende Komplexität durch verteilte Systeme, Dateninkonsistenz und Abhängigkeiten zwischen verschiedenen Komponenten. Wir diskutieren die aktuelle Kritik an Microservices und gehen der Frage auf den Grund, ob und wann der Wechsel zu Monolithen sinnvoll ist. 
 
***Links:***- denodo https://www.denodo.com/de- YouTube: Microservices by KRAZAM https://www.youtube.com/watch?v=y8OnoxKotPQ- YouTube: When To Use Microservices (And When Not To!) • Sam Newman & Martin Fowler • GOTO 2020 https://www.youtube.com/watch?v=GBTdnfD6s5Q- YouTube: Don’t Build a Distributed Monolith - Jonathan "J." Tower - NDC London 2023 https://www.youtube.com/watch?v=p2GlRToY5HI
- inwt Website: https://www.inwt-statistics.de/

Thursday Jan 11, 2024

Wir zeigen, wie Echtzeitprognosen trotz eines komplexen Modells im Hintergrund möglich gemacht werden können. In vielen Anwendungsfällen, wie in der Finanzbranche oder bei der Betrugserkennung, ist es entscheidend, dass Prognosen schnell und präzise sind, um innerhalb von Sekunden eingreifen zu können. Wir gehen auf die technischen und modellseitigen Herausforderungen dabei ein und geben Tipps, an welchen Stellschrauben auf Seite der Architektur gedreht werden kann. 
 
*** Links ***- inwt Website: https://www.inwt-statistics.de/
 

Thursday Dec 07, 2023

Hochwassererkennung mit Satelliten? Wie das funktioniert erklärt Philip Popien, Director of Machine Learning bei Floodbase. Das Unternehmen erstellt mithilfe von Deep Learning Modellen Hochwasserprognosen und ist so in der Lage eine parametrische Flutversicherung anzubieten. Wir sprechen über die Input-Daten, den Labeling Prozess und die Prognosen des Deep Learning Modells. Natürlich gibt es auch Einblicke in die aktuellen Herausforderungen und einen Ausblick über die Weiterentwicklung des Modells.
***Links***
- inwt Website: https://www.inwt-statistics.de/- Floodbase Website: https://www.floodbase.com/- Philip Popien bei LinkedIn: https://www.linkedin.com/in/philip-popien/

Thursday Nov 23, 2023

Data Mesh ist eine innovative Herangehensweise an die Organisation von Daten in Unternehmen. Dabei ist jedes Team für die eigenen Daten und Datenprodukte verantwortlich. Wir beleuchten die vier Prinzipien des Data Mesh (Domain Ownership, Data as a Product, Self-Serve Data Platform und Federated Computational Governance). Zum Schluss stellen wir uns die Frage, welche Eigenschaften eine Plattform mitbringen muss, um ein Data Mesh effektiv zu unterstützen, und ob dieser Hype einen Kulturwandel auslösen wird oder Theorie bleibt. 
***Links:***- inwt Website: https://www.inwt-statistics.de/- Blog: Data Mesh Principles and Logical Architecture by Zhamak Dehghani https://martinfowler.com/articles/data-mesh-principles.html - Talk: Data - The land DevOps forgot by Michael Nygard https://www.youtube.com/watch?v=459-H33is6o - Blog: How to select technology for Data Mesh by Ryan Dawson https://www.thoughtworks.com/insights/blog/data-strategy/how-to-select-technology-data-mesh- White Paper: Simplifying Data Mesh for Self-Service Analytics on an Open Data Lakehouse by Mike Ferguson https://hello.dremio.com/wp-simplifying-data-mesh-on-data-dakehouse-reg.html- White Paper: How to Knit Your Data Mesh on Snowflake https://snowflake.hub.hushly.com/data-mesh-stream/how-to-knit-your-data-mesh-on-snowflake

Thursday Nov 09, 2023

Wie unterscheiden sich eigentlich Machine Learning Projekte von "herkömmlicher" Softwareenwicklung und welche Herausforderungen bieten sie? Darüber unterhält sich Amit mit Philipp Jackmuth, dem Gründer von dida, der übrigens auch unser Büronachbar ist. Philipp teilt anhand eines Anwendungsfalls im Bereich Natural Language Processing wichtige Erfolgsfaktoren, darunter Metriken, Modularität und den Umgang mit Blackbox-Modellen. 
 
*** Links ***- inwt Website https://www.inwt-statistics.de/- dida Website https://dida.do/de- dida bei LinkedIn https://www.linkedin.com/company/dida-machine-learning/- Philipp Jackmuth bei LinkedIn https://www.linkedin.com/in/philipp-jackmuth/
 

Thursday Oct 26, 2023

Mit Attribution kann das Marketingbudget effektiv und zielgerichtet eingesetzt werden. Damit kann die Wirkung von Werbemaßnahmen auf Mikroebene gemessen und diese Erkenntnisse zur Maximierung des ROI genutzt werden.
Wir sprechen über 
Datenbasis und mögliche Kontaktpunkte einer Attribution,
aktuelle Herausforderungen, wie beispielsweise Cross Device & DSGVO,
Ansätze zur Attribution, von Heuristiken wie Last Contact bis hin zu statistischen Ansätzen wie logistische Regression und Survival Modelle. 
*** Links ***
inwt Website https://www.inwt-statistics.de/
inwt bei LinkedIn https://www.linkedin.com/company/inwt-statistics/mycompany/
White Paper zum Thema Attribution "Von einfachen Heuristiken zu optimalen datengetriebenen Modellen" https://www.inwt-statistics.de/blog/white_paper_attribution

Thursday Sep 28, 2023

Wie ist Data Science in einem E-Commerce Giganten wie Zalando organisiert - das erfährst du von Dr. Claudia Baldermann, Machine Learning Engineer bei Zalando. Im Interview sprechen wir darüber, wie der Product Development Prozess und die Organisation der Data Science Community bei Zalando gelingen.
 
 
 

Thursday Sep 14, 2023

Wir schwenken den Blick auf unsere Kund*innen und setzen uns damit auseinander, wie man erfolgreiche externe Beratungsprojekte gestaltet. Dabei gehen wir auf die verschiedenen Einsatzmöglichkeiten wie den Team-Ansatz oder Body Leasing ein und geben Tipps zur Auswahl eine*r Beratungspartner*in. Mit dieser Episode knüpfen wir an Episode #2 Erfolgsfaktoren für Predictive Analytics Projekte an. 

#31: Ist R eigentlich tot?

Thursday Aug 31, 2023

Thursday Aug 31, 2023

Vor 10 Jahren haben noch alle Mitarbeitenden bei INWT in R programmiert, heute ist das anders. Python läuft R den Rang ab. Wir reflektieren über die Unterschiede der beiden Programmiersprachen und versuchen eine Einschätzung darüber zu geben, wie es mit R weitergehen wird. 

Thursday Aug 17, 2023

Auch Data Scientists schreiben Software. In diesem Kontext können wir nur empfehlen sich mit dem agilen Manifest auseinanderzusetzen. Die 12 Prinzipien dahinter fassen wir in dieser Episode auf und erklären, was wir darunter verstehen und wie wir sie anwenden. 
 
Links:
- Prinzipien hinter dem Agilen Manifest https://agilemanifesto.org/iso/de/principles.html

In Numbers We Trust

Wir machen Data Science. Und in unserem Podcast IN NUMBERS WE TRUST reden wir darüber.

Du bist ebenfalls Data Scientist oder interessierst dich für Daten, ML und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten.

Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in über 10 Jahren als Data Scientists im B2B Bereich gesammelt haben.
Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt.
Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.

Copyright 2022 All rights reserved.

Podcast Powered By Podbean

Version: 20240320